x^2+3x+x+4+24-2x=180

Simple and best practice solution for x^2+3x+x+4+24-2x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+3x+x+4+24-2x=180 equation:



x^2+3x+x+4+24-2x=180
We move all terms to the left:
x^2+3x+x+4+24-2x-(180)=0
We add all the numbers together, and all the variables
x^2+2x-152=0
a = 1; b = 2; c = -152;
Δ = b2-4ac
Δ = 22-4·1·(-152)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{17}}{2*1}=\frac{-2-6\sqrt{17}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{17}}{2*1}=\frac{-2+6\sqrt{17}}{2} $

See similar equations:

| 50.6+2.2=150.6-7.8x | | 15=1.66666666667(x+12) | | 2(-2+q)=3(q-7) | | -2.5n+1/3=7/15 | | 3/2=50/n | | 20=r+3 | | 25*d=1500 | | -12/7x=10 | | -7(n-3)=161 | | -2x^2+1/2=-17.5 | | 5(3x+7)=20-2(×+1) | | 0.6x+9=9 | | 2x-10/5=2x+6 | | 3x+1=10x-6x+1 | | 25v=225 | | 10p-8=p | | Y=17x+5 | | 6(-8v+6)+2=422 | | g+g=30 | | 33=3(u+6)-6u | | 6x+4-2x+3=23 | | 1/2b+9/4=7- | | 4(-7x+4)=240 | | -4m+6-m-2=31 | | 10=12/7x | | 9n-5=8 | | -3+n/5=6 | | 5-6x+-9x=-10 | | 4(6x-4)=22x | | -6+4v=2v+6 | | 5y-4+18=(13 | | -3-7x+8=11 |

Equations solver categories